JOURNAL OF
NEUROSGIENGE
METHODS

www.elsevier.com/locate/jneumeth

ELSEVIER Journal of Neuroscience Methods 135 (2004) 43-54

A posture optimization algorithm for model-based
motion capture of movement sequences

Jure Zakotnil®*, Tom MathesoR, Volker Diirr2

@ Department of Biological Cybernetics, University of Bielefeld, P.O. Box 10 01 31, Bielefeld 33501, Germany
b Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

Received 21 July 2003; received in revised form 24 November 2003; accepted 28 November 2003

Abstract

We have developed and evaluated a new optical motion capture approach that is suitable for a wide range of studies in neuroethology and
motor control. Based on the stochastic search algorithBnadilated Annealing (SA), it utilizes a kinematic body model that includes joint
angle constraints to reconstruct posture from an arbitrary number of views. Rather than tracking marker trajectories in time, the algorithm
minimizes an error function that compares predicted model projections to the recorded views. Thus, each video-frame is analyzed independently
from other frames, enabling the system to recover from incorrectly analyzed postures. The system works with standard computer and video
equipment. Its accuracy is evaluated using videos of animated locust leg movements, recorded by two orthogonal views. The resulting joint
angle RMS errors range betweer7Oand 49°, limited by the pixel resolution of the digital video. 3D-movement reconstruction is possible
even from a single view. In a real experimental application, stick insect walking sequences are analyzed with leg joint angle deviations between
0.5° and 30°. This robust and accurate performance is reached in spite of marker fusions and occlusions, simply by exploiting the natural
contraints imposed by a kinematic chain and a known experimental setup.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction tiple views, which enables the system to reconstruct their
3D-trajectories. Beginning with an initial marker assign-
Automated 3D analysis of movementsigtion capture) ment, joint positions and angles can subsequently be calcu-

has become an important method for studies in biomechan-lated for each time frame from a set of identified markers.
ics, motor control and neuroethology. The study of limb However, optical motion capture systems have to deal with
movements in particular requires automated and reliable a number of problems:

aquisition of large datasets to cope with variability of move-

ments within a broad natural action range and to study the_ir. Markers can disappear in a view, for example when they
pontext-depende_nt control. Insects such as locusts and stick are occluded by the segment on which they are placed,
insects are prominent model systems for the study of motor by other body parts, or when they are rotated parallel to

phy_S|oIo§1yrgBurrows,h1996;dl?:[ihassler, dlt983)n<|j rectehnt ex- bil the light source. They can also occlude each other, which
periments have emphasized the need to analyze the variabil- appears as a marker fusion in the video,

ity of insect limb movements in a range of situatic@xirr e Ghost markers appear at positions where the experimental

ang Mathesc_)nl, 2’303)b d ontical moti ; ; setup or the body surface reflects the light, e.g. the shiny
ommercial video-based optical motion capture systems . .10 of some insects.

((_a.g.l\ﬂcon MOt'to n Sf/lste?ls, l ealk: Perfolrmar:jce T;aﬁhnolo—l q° Simple marker tracking algorithms depend on the time
SI&dG n(_:l;) u'se”re rore kec ve r_r;.ar ers place 3” d feana yz:a resolution of the trajectories, because they use tracking
ody. Typically, marker positions are recorded from mul- o chpiques to reconstruct the initial marker assignment in

subsequent frames. This approach is inapplicable for fast
* Corresponding author. Tek-49-521-106-5519. m.ovem.ents when .relylng on common video equipment
E-mail address: jure.zakotnik@uni-bielefeld.de (J. Zakotnik). with a time resolution of 50 Hz.
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Incorrect marker identifications require time-consuming is only feasable, if the movement is sampled at a sufficient
manual reassignments in individual video frames, so the frame rate. In many experimental situations, it would be
robustness of the system against the afore-mentioned probpreferable to use standard video and therefore a sampling
lems is of great importance for usability. Motion capture rate of only 50Hz, or even concatenated videos of inde-
systems can improve their robustness by using high speedpendent movement sequences. Particularly, concatenation
cameras and several views of the scene, but this increasesan be useful in behavioral experiments with many trial
cost and complexity. Here, we present an approach thatrepetitions, because the video sequence does not need to
achieves very good performance while using only standard be cut and no manual marker assignment is necessary for
laboratory equipment. individual trials.

In the simplest case of optical motion capture, marker po-  We present a new algorithm, which utilizes a constrained
sitions are tracked in 2D image space and their 3D positionskinematic body model to allow 3D motion capture of
are reconstructed by triangulation algorithrfBlackman PAL/NTSC avi-videos with only two views and single frame
and Popoli, 1999; Faugeras and Robert, 1994; Chen et al.analysis. This is a stochastic algorithm that manipulates
1994) To improve robustness, some human motion analysis the posture of the model to minimize a distance measure
systems use kinematic body models as well as tempo-between projections of the model and the recorded markers
ral movement model§Aggarwal and Cai, 1999; Gavrila, in every single frame. Less accurate 3D reconstruction is
1996) Kinematic models impose position constraints on possible from a single 2D view, albeit with less accuracy.
markers, because of constant segment lengths and joint In (Ohya and Kishino, 1994 stochastic method is used
angle limits (DiFranco et al., 2001)A human kinematic to determine human posture utilizing genetic algorithms.
model is used byHerda et al. (2001{o verify reconstructed  This silhouette matching algorithm produces rather large
marker trajectories (performed by stereo triangulation) and errors in posture reconstruction. A stochastic error func-
to predict marker occlusions. Marker trajectory identifica- tion minimization approach is also used Bpckwood and
tion is also checked by a skeleton model (lropatenok Winget (1997)o reconstruct 3D-models of objects from 2D
and Kudrjashov, 2002)y application of rules for plausible  photos in an engineering application, but without analysis
joint positions. The latter two use the skeleton only as a of natural movements.
validation technique for reconstructed marker trajectories. In contrast, our approach optimizes body posture by
Eian and Poppele (2002se a kinematic model and camera means of an error function, using markers on a kinematic
dilation formulas to infer joint angles. This is done even chain. Thus, we use joint constraint information to limit
from a single view, but marker occlusions are not dealt with the search space. The Simulated Annealing (SA) algorithm
and it was tested on very constrained postures. exploits these constraints to find efficiently the best match

To further constrain plausible marker movements, the between the model and the camera views. The algorithm is
kinematic model can also be used as part of a more gen-implemented in a software package calddeoTrack and
eral state space model includirtgme dynamics of the is shown to accurately reconstruct natural movements.
movement.O’Rourke and Badler (1980)escribe a cyclic
scheme consisting of four steps: prediction of state, synthe-
sis, image analysis and state estimation. State space filter2. Motion capture as an optimization task
like the Extended Kalman Filter compare reprojections of
the predicted model state to detected image features like In a typical application in neuroethology or physiology
marker positions. State variables usually include joint an- of animal locomotion, retroreflective markers are used to
gles and velocitiegCerveri et al., 2003; Liu et al., 1999; label locations on an articulated body. Movement of the
Nickels and Hutchinson, 2001; Ringer and Lasenby, 2000) body is then video-recorded, and films are digitized and de-
Hidden Markov Models model the dynamics of move- interlaced. To detect 2D marker coordinates each cam-
ment (Karaulova et al., 2000)A posteriori constraints for  era view, a number of image processing steps are applied to
smoothing of angular time courses are appliedliyranco the resulting AVI-file Fig. 1): first, the image can be filtered
et al. (2001) However, the prediction step of these systems with standard image processing filters for threshold, erosion

Video Clustering Detected

; De-interlace Filter h
(avi-file) Segmentation Points d

- . - .
Fig. 1. Image processing steps to detect 2D marker positions with a sample marker image at each step. Video frames are de-interlaced into even ar

odd half-frames feven fodd). Every de-interlaced video frame is filtered (e.g. thresholded) into a binary image. From this, marker pixels are clustered
and separated from the background into marker regions. Centroids of the regions determine a set of markerdgositions
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Jix For example, an orthogonal top projection of a 3D homoge-
. . nous marker translatiom onto a 2D homogenous vector
P = (Xp, ¥p, 1T is given inEq. (3)with scale factos.
Fig. 2. A kinematic chain with jointd with their rotational axes, segments Xp s 000
S and markersM. Each joint J contains a local coordinate system y =10 s O Ol -m 3)
(indicated in the circles). Subsequent joints are connected by segments.
Joint J,+1 defines the end-effector of the chain. The location of markers 1 0 001

on the chain is defined by cartesian coordinates within the corresponding . "
coordinate system. Note that markers are typically located on the surfaceThe exact projection matrix values depend on the camera

of a limb, whereas segments denote the main axis connecting two joints parameters and are derived from camera calibration methods
in the model. as proposed bghang (1999and implemented in the Matlab
camera calibration toolbox.
and color as described l8yonzalez and Wintz (1991Then
the filtered image is segmented, so marker positions are de-2.2. Joint angle constraints
termined by the centers of the resulting regions.
Although all joints of the kinematic model have three
2.1. Kinematic model DOF and can rotate arbitrarily, additional constraints need
to be specified in most cases. They can be categorized into
The articulated body is described as a set of kinematic two constraint typesPhysiological constraints determine
chains Fig. 2). Every chain consists of rigid segmerfis the range of angles that can be actively controlled by a spe-
joints J and markersM. Segments are defined by a con- cific body. For example, many insect leg joints are typically
stant length (translatioff) and a default rotatiorR® with modelled as hinge joint&Cruse and Bartling, 1995yhich
respect to the originating joint to which they are connected. means that two rotational axes are lockktbvement con-
An arbitrary number of markers can be positioned on each straintsdescribe the range of angles that the articulated body
segment with a 3D translational vector. actually uses for a particular type of movement. For exam-
Every joint coordinate system is defined by three rota- ple, walking behavior of an insect typically consists of a se-
tional degrees of freedom (DOF) expressed in a rotational quence of swing and stance movements with limited angular
matrix R, a constant default orientatiakf' of the joint on the ranges. In general, neither type of constraint can be deter-
originating segment and a translati@h R simplifies the mined exactly. The constraint mechanism should either be
definition of joint constraints, because the resting orientation able to update the angle constraints based on the analyzed
of a joint can be reproduced in the model. Direct kinemat- movements or allow manual control by an expert.

ics for a given kinematic chain are obtained through multi-  In our implementation, joints are characterized by discrete
plication of homogenous transformation matricgs.((1)), angle probability distributiong? for each rotation axig in
starting from a root joint/p, followed by segments,, and 360 bins. They are initialized with an uniform distribution
joints J, and finally terminated by an end-effectéy, 1. across the physiologically plausible angular range, and zero

d. _ d values in the remaining bins. For each measured joint angle
Jo=Ro-Roi Jusr=Ju-Su- Rura-Rypq-Toa (1) g, the value of a distrik?ution bin can be updated z;nd nor-g
Sp =T, R malized as inEq. (4) whereN is the number of trials for

. . . the updated distribution.
whereR = R, - R, - R; is the homogenous rotation matrix P

defining the rotation of the joint coordinate system by ro- (N =D H; y_1(x) + A 1, fex
tation according to Euler angles; afidis the homogenous Hin(x) = N ; = 0. else
translation matrix. ’

In the simplest case, the origin of the roop) is con- (4)

stant, which means that its position is not changed by ma-
nipulation of the posture. Alternatively, it is marked by a 2-3. Optimization by means of an error function
root marker, which is tracked by a next-neighbor algorithm
in all viewplanes and determines an offset-position for each
frame.

For direct kinematics of each one @éfmarker positions,
the matrixM,;, which describes the transformation of #té
markerM,; on segment into the root coordinate system, is

For each model posture, an erréris calculated as a
similarity measure between model and recorded markers.
ThereforeE is the sum of all Euclidean distances between
projected model markers and their nearest detected points
d in vmax views Eq. (5) seeFig. 3for scheme).

calculated according t&q. (2) VmaxMmax
; E=3" > min(lpf - dfl) 5)
Ma = Js- 55 My @) k=1 i=1

Projection onto the camera viewplane is determined by mul- where 0< ¢ < C andC is the number of detected points.
tiplication with a projection matrix of the appropriate view. C does not necessarily equalay (i.€. in the case of ghost
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Top view,
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Fig. 3. Schematic view of error calculation. A 3D kinematic chain is projected onto a side and a top view (ppiatsl compared to the recorded
marker positions/ in the video. In the experiments, a mirror was used instead of a second camera.

markers). Wrong matching of model markers and detected The temperature; at iteration: is multiplied by ¢; €
points is discussed iBection 4 [0; 1] each N, iterations and therefore decreases exponen-
Note that E is non-linear, because marker projec- tially. The temperature annealing valug must be chosen
tions p; are determined by forward kinematics. Therefore carefully, because it controls the probability of escaping lo-
gradient-descent algorithms would often converge into lo- cal minima. Similarly, the search step lengtls multiplied
cal minima. Also in general the global minimum &f is by ¢; € [0; 1] each), iterations. It determines, how quickly
non-zero due to inaccuracies in the camera setup, imagethe search space is reduced.
processing and segment length measurements.
A suitable optimization algorithm is th&mulated An-
nealing approach, developed W¢irkpatrick et al. (1983) It 3. Evaluation results
is a Monte Carlo method that iteratively traverses the pa-
rameter space in a stochastic way. In every iteraticanran- The presented algorithm was implemented as a software
domized vectow is added to the parameter vectomwhich application on a standard PGéction 3.} Its accuracy
contains the angles for all rotational axes for all joints. Vec- and robustness were evaluated both on artificially generated
tor v is calculated from equally distributed random numbers videos with known parameter§é¢ction 3.2 and in an ex-
ri € [—1; 1] and the standard deviation of the appropriate perimental situation with real insectSdction 3.3.
joint axis distributions(H;). Additionally, v is scaled with a
value!/, representing the search step length, which is equal 3.1. Implementation
for all joints (seeEq. (6).
6) The presented algorithm has been implemented sual
C++ for MS Windows and was tested on a PC equipped
The standard deviatias( H) is larger for more variable joint  with an Intel Pentium 4, 1.8 GHz processor. The program
axes and therefore generates larger search steps. It can alsddeoTrack features a graphic interface and loads AVI-files
change over time, because the probability distributions arein DV-video format (720x 576 pixels), with one or two
adapted during the analysis. views of the scene in one video. These can be obtained by
Additionally to Eqg. (6) v; is computed again, if using a video splitter or a mirror. A rectangular region of
H;(j,+1) < Ty, whereTy, is a threshold describing plausi- interest can be set, as well as the combination of filter mod-
ble joint angles. The decision whethgr, 1 is accepted as  ules for image processing. Filter parameters can be adjusted
the new parameter vector is determined by the Metropolis to allow extraction of as many markers as possible while
criterion (Kirkpatrick et al., 1983) It is based on the dif-  suppressing ghost marker regiok&y. 4 shows a screenshot
ference between errois, 1, E, and a parameter called of the program.
temperature. Ifj,, 1 is rejected, it is reset tg,. The algo- An appropriate kinematic chain and corresponding
rithm terminates afteNeng iterations or ifE < ¢, wheree joint constraints are loaded from XML-files and visu-
is an error residual set by the experimenter. For a review alized in an OpenGL-view using a scenegraph library
about the SA-algorithm and its properties, g8arts and (http://www.openscenegraph.grdhe kinematic chain can
Korst, 1989) be manipulated in a dialog with immediate display of its

Jn+1=Jjn+1-v with v =s(H) r


http://www.openscenegraph.org
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Fig. 4. Screenshot of the softwa¥édeoTrack. The main window is divided into three parts: The left part (1) contains a control panel and a table with
error function values for each frame. In the middle (2) is a video view, which shows the current video file and marker projections. The top portion
illustrates the side view of a stick insect marked with reflective discs. The lower portion shows the corresponding top view. The analyzed posture for
the selected frame is shown in an OpenGL-visualization on the right side (3).

projection on the video-image. The starting posture in the tal parameters (such as joint angles, segment lengths and
first frame is calculated from mean values of joint angle camera projection) must be known. Second, the analyzed
distributions. movement should originate from empirical data, so that the
Parameters for the SA were set manually according to algorithm can utilize natural joint characteristics during anal-
Table 1 As the maximum number of iterations determines ysis. To determine the accuracy with which an experimental
the speed of the algorithm, this parameter was limited to a situation in insect motor physiology could be analyzed ide-
value that permitted sufficient convergence and reasonableally, we implemented a 3D-model of a locust leg and ren-
rate of progress. The cooling schedule, which determinesdered an artificial video. To satisfy the second requirement,
how temperature values are decreased, was set according td0 manually analyzed grooming movement sequences were
general rules given bgait and Youssef (1999, pp. 66—73) concatenated to one video (668 frames, 13.4 s total) using
kinematic data fronDurr and Matheson (2003)
3.2. Accuracy: analysis of virtual locust leg movement The kinematic model that was used to generate the video
also served for the analysiBi§. 5): The body—coxa jointlp

An estimation of the posture reconstruction accuracy in was described with three DOF, while the trochanter—femur
real experiments has two requirements: First, all experimen-

Table 1

SA parameters for evaluation experiments

Parameter Value

Nend 35000

N 3500

N 1500 . . . . .

o 200 Fig. 5._K|nemat|c chaln_ _of a _Iocust hlnd_ I_eg u_sed for the accuracy

! 1 evaluation. Body—coxa joint/y is the root-joint with three rotational
axes and angular limits in bracketg[120°; 220°], ¥[—40°; 40°] and

C" 0';5 af[—10°; 10°]. It is connected to the trochanter—femur joistf by the

;’ 2 5 coxa, and the femur-tibia-joinf, by the femur.J; and J, are hinge

joints with axesg[—30°; 60°] and y[20°; 160°] respectively. Anglesy, 8
If the error for a frame was larger than an arbitrary value (here: 10 pixels), andy rotate the hind leg within a plane, i.e. the leg plane. Angleand
the frame was analyzed again, at most five times. Y determine the orientation of this leg plane.
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joint J; and the femur—tibia joint/> were considered as  Numerical inaccuracies in the image processing, causing a
hinge joints. Hinge joints were locked in two of the three deviation of a single pixel in detection of the marker on
DOFs by setting a single angle bin of the joint histogram the coxa-femur joint/1, changed the measured angle by
to 1. Markers were positioned at the joint centers in this atan(1/13) = 4.4°. Nevertheless the small overall error in
experiment with a diameter of 4 pixels (1.4 mm). a + B implied that the error in the-joint was cancelled out
Two orthographic views (side and top) were generated in by the error in thes-joint. Thus, calculation of the angles of
one video, resulting in a leg length of 181 pixels (coxa: 13, the next distal joint remained accurajegngle inFig. 6).
femur: 91, tibia: 77) for each view. The analyzed leg uses In a few frames, the algorithm converged to a posture
a quarter of the PAL resolution and therefore resembles thewith a large view error, indicating that it converged to a
resolution in the real experiment. The algorithm was evalu- local minimum. Because SA is not a deterministic algorithm,
ated in fully automatic mode with no manual corrections of this problem was overcome by repeated analysis of affected
the detected posture. frames with the same SA parameters, until an error threshold
The accuracy of the image processing was determinedof 10 pixels was reached. This threshold was chosen, because
by comparison of the calculated marker projections and ob- it was clearly larger than the expected analysis result.
served marker centroids in every video image. Image pro- An example of a large posture error due to ambiguous
cessing was performed at a speed of 8.4 frames per secongostures despite small view error is shownHiy. 6 for
(fps). Two errors were made during the image processing: two frames (see arrows). Anglesand ¢ differ from the
first, the mapping of continuous marker positions to discrete real angles, even though the view error is not increased.
coordinates led to a quantization error during the generation Therefore, there exist two postures, each of which minimize
of the video. Second, the clustering algorithm calculated a the error function with differenp- and vr-angles. If these
center pixel for each marker, which may not be the exact frames are analyzed repeatedly, the algorithm also converges
center of the marker. In a typical 5s sequence, this causedto the correct posture. Possible improvements to eliminate
an image processing RMS error of 0.43 pixels. Therefore, ambiguous postures are discusse&attion 4
image processing algorithms introduce only a small carte- For comparison, the algorithm was also tested using only

sian error to the subsequent posture optimization. a single view, same model and SA parameter set. Gener-
The error made during optimization can be partitioned ally, accuracy is lower for rotations orthogonal to the view
into two classes: First, the remaining erragie(v error) of the plane, e.gp and ¢ in side view andyx, 8, y in top view.

optimization function (erro® in Eq. (5), which measures  That is because angles are implicitly inferred from single
the distance between the model’s projection and the recordedsegment length projections (sé&able 2for detailed angle
view. Second, the angular errquo&ture error) between the  errors), which is less accurate than if several projections are
analyzed model posture and the real posture in all joints. measured. In case afand g, however, the RMSEs are even
Although both errors depend on each other, optimization of lower in the single side view, because the less accurate top
one of them does not necessarily lead to a small value of view (for these angles) does not have any influence on their
the other one. For example, occluded markers can producereconstruction.

a large view error, even when the object posture can be

estimated well. On the other hand, if only a few markers are 33 Robustness: leg movement analysis of freely walking
available, they can be approximated well in all views with ok insects

multiple possible postures, increasing the posture error.

Having applied SA parameters dable 1 the speed of Having determined the accuracy of the algorithm in an
fitting the body to the detected points was 0.4fps. The av- jgea| video, we were interested in its robustness and appli-
erage view error of 2.9 pixels (S.D.: 1.1 pixels) total was capility to real experimental situations. We therefore tested
added up for eight detected markers (four markers in eachthe system on walking behavior of another model animal in

of two views). _ motor physiology, the stick insec€érausius morosus). A
A sensitivity analysis was performed to ensure that cho- typical experimental situation causes many difficulties that a
sen SA parameters were sufficient for the takaa could  motion capture algorithm must deal with. For example, the

be reduced to 20,000 (with linear scaling®fandN;), in-
creasing the average view error by 5% of the previous value.
The average result did not improve by further increase of Table 2
the iteration number. Variation @f andc¢; in the range of RMSE fo_r all analyzed joints for two views and single views for an
[0.41; 0.79] kept the view error within 5% of the old value, ~2"iicial video (668 frames)
Resulting angular RMS errors were low and ranged from Rotation axis ¢ (°) ¥ (®)  a() BC) a+B() v(©)

0.7° to 4.9°, depending on the joint. Original and analyzed goth views 1.7 15 4.7 4.9 07 07
angle time courses for a typical sequence are plotted in Side view 208 17.4 3.9 3.6 3.1 35
Fig. 6. a-angles ang-angles systematically deviated from Top view 147 104 237 296 234 52.4

the real angles (RMSE:.#, 4.9°). This effect was due t0  analysis accuracy is highest for two views or, if the rotational axes are
the short coxa segment between the parallednd g-axes. orthogonal to the viewplane, sometimes for a single view.
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Fig. 6. Analyzed joint angles for a representative locust leg movement lasting 1.4s (71 frames). The video was generated artificially to allow exact
measurement of the algorithm’s accuracy. Note the different scalg-&argle. RMSE of the rotational axes aggaxis: 26°, y-axis: 23°, a-axis: 40°,

B-axis: 45°, y-axis: Q7°. The analyzedr- and g-angles systematically differ from the original values due to a small segment length and the effect of
image processing inaccuracies. Accordingly, their sum g has a RMSE value of.@°. Ambiguous postures (see arrows) are found for ¢gheand

y-angles in frames 56 and 58, where two possible postures minimize the error function.

segments of each leg are nearly orthogonal to one anothement therefore provide the best test for the robustness against
during walking, resulting in marker occlusions and marker inaccuracies of real experiments.

fusions in one or both views. In addition, inaccuracies such

as inexact segment length measurements and kinematic sim3.3.1. Setup

plifications limit the optimization of the posture. Finally, Animals were marked with reflective tape markers (3M
technical inaccuracies such as camera parameters influenc&cotchLite, diameter: 1.2 mm). To analyze the movement
the optimization process. Real videos of a complex move- of the body axis and the right front leg, two markers were
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T i @ Walking animals were recorded on PAL videotape using

T:,a- ° = JT M,y a CCD-camera (COHU 4910) located above the setup. A
Body V. Fedr side view was obtained from a coated mirror set at 45

% ,3013/\‘ ¥ and 150 mm from the animal. The setup was illuminated

by an LED flash light consisting of a circle of 36 IR-LEDs
(880 nm), mounted on a ring around the camera lens to
achieve maximum brightness of the retro-reflective markers.
Fig. 7. Kinematic model of the right front leg of a stick insect, as used The Vldeq synchronization signal was extracted electroni-
for the robustness measurements. Four markéssMs were used and cally to trigger one flash per half-frame. The LEDs were
recorded by two camera views. The root of the kinematic chain is joint flashed to maximize their power consumption capacity and
Jo which determines the body axis orientation in space. Its rotation axes therefore their brightness.

are n[—35°; 35°] and p[0°; 20°]. It is connected to a thorax—coxa joint The camera was positioned 1300 mm above the animal,

J1 with three DOFa[150°; 240°], ¢[—30°; 50°] and [—45°; 75°]. The . L .
femur—tibia jointJ> is modelled as a hinge joint with a single rotational with a focal length of 3900 mm. No significant lens distor-

axis y[10°; 140°]. The segment between the thorax and the femur (the tiONS were measured, so orthographic projection matrices
coxa) is short, allowing us to model the combined thorax-coxa and were used (seEg. (3) top:s = 3.0, side:s = 2.86).
coxa-trochanter joints. The trochanter—femur joint is fused in stick insects,  \jjdeos were digitized (miroVideo DC3®innacle Sys-

so it can be ignored. tems), de-interlaced and processed by a threshold filter.

- The starting offset of the root marker was determined
placed on the body, one on the femur and one on the tibia. manually for the top and side view in the first frame of
Marker positions and segment lengths were measured usingach walking sequence. Parameters of the SA algorithm
a caliper gauge to obtain a body model for each aniFigl.7 were set as shown ifiable 1 We analyzed four videoclips
shows the kinematic chain that models the stick insect front (526 frames, 10.5 s total length) in 100 runs of the software.
leg and body. It consists of rotational axes and joint angle Repetitive analysis produced slightly different results in each
constraints that were estimated manually and initialized with trial, due to the stochastic nature of the algortihm. The mean
an equal distribution. deviation gives a measure for the precision of the algorithm.

Tibia || M,

y-angle [7]
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Fig. 8. Analyzedx andy-angles for 50 analysis iterations of a single video (159 frames). Block bars indicate stance movements, open bars indicate swing
phase. Results deviate because of multiple equally good local minima of the error function (mean error value of each analysis: 8.2 pixels)hAlthough t

a-angle can be reconstructed unambiguously (low deviation48°>lbetween runs), the-angle is more difficult to determine. The time inset shows that

the analyzed angles for a particular frame do not deviate stochastically but rather contain few distinct values. These correspond to ambigsous postu

as explained irFig. 9.
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Table 3 4. Discussion
Median standard deviations for all joints after 100 analyses of four videos

(526 frames total)

We demonstrate the power of a novel video-based motion

Rotation Median of Joint angle S.D.Jangle capture algorithm that minimizes an error function by means
axis S:D. () range () range (%) of Simulated Annealing. The algorithm detects the current
™ 0.50 70 0.72 posture of an articulated body by matching projections of a
5 2:31 ;g ‘ll:gg kinematic model to a detected set of marker points. We have
v 3.04 80 3.80 designed a system that minimizes time-consuming manual
B 2.54 120 2.11 corrections of the data and provides sufficient accuracy for
Y 2.83 130 218 posture reconstruction, as tested for two model systems in

Because different joints are constrained by different angle ranges, we alsoMotor physiology. It achieves high robustness even when
indicate the percentage of their deviation with respect to their range.  USing only two standard CCD camera views and 50 Hz frame
rate.
3.3.2. Results Standard methods identify and track markers to deter-
In contrast to the ideal setup used3action 3.2a number mine their 3D positions and subsequently infer the body
of uncertainties inevitably affected our analysis results. Of posture by kinematics calculations exploiting known marker
particular importance were those that caused a mismatch ofidentity, position and velocity (e.gAllard et al. (1995).
the kinematic model with the real morphology, precluding Such methods become unreliable when analzsing fast limb
an error function value of zero. Because model projections movements, because the trajectories are sparsely sampled.
cannot match the video exactly, different postures may mini- In addition, marker occlusions, fusions and ghost mark-
mize the error function equally well. Although the minimum ers hinder frame-by-frame identification of individual mark-
error did not become zero, convergence of the algorithm wasers. For example, a marker fusion in one single frame may
optimal in the sense that it succesfully minimized the error lead to incorrectly switched labels and therefore erroneous
function. The average view error was 8.1 pixels (S.D.: 3.4, data in all subsequent frames. Although predictive algo-
n = 52600), accumulated for eight markers, indicating that rithms like the Extended Kalman Filter adapt to the qual-
the view error per marker is in the range of a single pixel. ity of their prediction, their history dependence makes them
In this experiment, image processing speed was 6.6 fps anderror prone in cases where the frequency of the observed
model fitting was performed at 0.4 fps. movement is at a similar range as the sample frequency.
Analyzed angles for all rotational axes reveal typical Then, joint angle accelerations become too erratic to be pre-
walking behavior, with stance and swing movements. Time dicted. In the experimental situations tested in the present
courses for the:- andy-angles for one video are displayed study, 50 Hz recordings of fast locust kicks and stick in-
in Fig. 8 showing four stance and swing movements of a sect swing movements represent such difficult situations, be-
leg. The precision of the system is described by the mediancause extension/flexion cycles can alternate during only a
values of the S.D. for all rotational axes (Sesble 3. Devi- few frames.
ations range from .60° to 3.04° (0.7% to 4.5% joint angle In contrast, our approach analyzes each frame indepen-
range), while some sections of the movement are analyzeddently from previous ones. Apart from optional tracking of
more precisely and others contain ambiguous postures.a root-joint that defines the overall movement and the frame
An example of a common ambiguous posture is shown in of reference, no explicit marker-labelling or tracking is per-
Fig. 9. Two distincty-angles both minimize the error func- formed. The camera time-resolution does not influence the
tion, so the algorithm stochastically converges into either quality of analysis. One consequence is that even concate-
one of them. Improvements to the algorithm to eliminate nated videos of non-continuous movements can be analyzed,
such ambiguities are discussed3action 4 as is useful in cases in which several movement sequences

top
=l i— |

| Posture A Posture B

Fig. 9. Example of two ambiguous postures (postures A and B shown in the 3D model) from stick insect walking, in which the algorithm detects two
minima of the error function. Both possible femur—tibizangles generate very similar side projections, i.e. marker distaficasd d, differ by a very

small value, and therefore contribute little information to the posture reconstruction. The top projection can be interpreted in two ways:tRéher as

real posture (A) which matches all observed markers or as an erroneous posture B which fuses two markers and assumes that the remaining is a ghost
marker (white square).
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were recorded on one video tape at different times. Further- Ghost markers generally do not affect the performance
more, no initial marker assignment is necessary, because thef the algorithm, because they do not change the minimum
system optimizes the posture in the first frame. It also re- of the error function. They do not match constant segment
covers automatically from badly or inaccurately analyzed lengths or angle constraints and therefore are not closest
postures. points to model marker positions. The latter property is par-

On the other hand, the posture has to be determined unamticularly valuable in situations where the experimental setup
biguously for each frame. For example, videos of stick insect does not permit control of the contrast between markers and
movements often contained marker fusions, which result in background. This has been a significant problem in analyz-
several possible postures as showRimp 9. To minimize the ing the movements of insects, which often have highly re-
number of possible postures in each frame, the search spacélective surfaces (e.g. wings).
is constrained to valid postures by the use of joint angle his- As an option for more accurate reconstruction, our algo-
tograms. In the terminology déleicher and Ferrier (2002)  rithm easily scales to a variable number of camera views. Ad-
joint angle histograms are typicetharacter constraints, be- dition of additional cameras is simple as it requires only the
cause they describe limits for joint angles and, in addition, measurement of their projection matrices and the incremen-
the probability of a specific movement type. In our approach, tation of the parametarmax in the error functionfq. (5).
histograms are adapted during the analysis and saved in aiThe method does not perform geometric reconstruction of
XML data format, allowing standardized exchange of con- 3D-positions of identified markers, like the widely used
straint archives and continuous improvement of subsequentDLT-algorithm described b hen et al. (1994)Rather, our
experiments. The SA algorithm uses the histograms to limit approach yields posture data from manipulation of a forward
the search space to likely values. Other data-mining methodsmodel and does not require solution of the inverse kinemat-
such as principal components analysis could also be utilizedics problem. As a result, singularities are avoided, irrespec-
to simplify the searched posture space. tive of the number of DOF and markers.

Disambiguation of detected postures can be achieved by To generalize the algorithm to markerless motion esti-
further constraining the model predictions to a maximum mation, the error function could compare the model to the
velocity or acceleration. For example, violation of such con- video image on pixel-level. However, this would require a
straints can force large increments on the error function or more accurate model of the analyzed body and good knowl-
trigger an automatic re-analysis of the frame. In this solu- edge of the illumination of the experimental setup. Another
tion, the algorithm would not rely on particular joint an- possibility would be the extraction of suitable features in
gles from previous frames, nevertheless exploit a plausible the video, which would require a higher level image pro-
motion continuity property. Another disambiguation heuris- cessing step. For example,Maclver and Nelson (2000a
tic would increase the error function, if not all markers in  3D-mesh model of a knifefish without markers was fitted to
a videoframe are next-neighbors to a model projection. In match the video image of the animal.
both cases, SA avoids these situations automatically. Here, we evaluated the accuracy of the system with artifi-

Designing the motion capture process as an optimization cial videos in both single and double views. Overall angular
task reveals three interesting properties. First, analyses ofRMSE was smallest, if both views were used, but postures
artificial videos showed that SA is capable of solving the could also be determined even from a single view. As publi-
minimization problem, because the remaining error averagescations on the accuracy of commercial systems use different
out to only a few pixels equalling the range of image pro- setups and evaluation criteria, the quantitative comparison
cessing errors. Second, using modern PCs, it is possible toof achieved angular accuracy is limited.Richards (1999)
analyze experimental data over a timescale where the ex-a typical angle RMS error of°3was reported for the angle
perimenter can watch the progress. Moreover, the speed isbetween three markers that were mounted on a rotating disc
easily adjustable by manipulations of the maximum num- and filmed by six camerablcQuade et al. (2000valuated
ber of iterations and/or the terminating error threshold. Al- the Peak Performance System, reporting an angular mean
though the system has not been designed for real-time usage$.D. of 147° using three cameras. As listedTable 2 joint
a real-time application seems possible by reduction of the angle RMS errors of the presented approach range from
maximum number of iterations with more inaccurate results. 0.7° to 4.9° using only two views. Therefore our algorithm
Using a kinematic model with a larger number of joints (e.g. performs extremely well while using a simpler and cheaper
all six legs of an insect, or a human body) and more markers setup than other state of the art motion capture systems used
is possible, but more complex calculations of forward kine- in neuroethology.
matics would slow the algorithm. Third, the remaining er- Having measured the precision of the system by repeated
ror after optimization provides an explicit confidence rating analyses of natural stick insect movements, median stan-
for posture reconstruction, i.e. it allows the experimenter to dard deviation was well in the range of commercial systems
immediately detect frames that need manual corrections or(1.72° on average, se€able 3. For exampleSelfe (1998)
re-analysis. This is especially important, when the user usesreported a mean S.D. of B for the Peak 5 system in real
the software in semi-automatic mode, in which he verifies knee joint angle measurements, considering position uncer-
the results of the analysis for each experiment. tainties for the marker placement.
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For comparison with manual analysiiirr and Matheson Aggarwal JK, Cai Q. Human motion analysis: a review. Computer Vision
(2003)report manual digitizing accuracy of five pixels, using =~ and Image Understanding 199973(3):428-40. _
an experimental situation equivalent to the setup used in Allard P, Stokes IA, Blanchi JP (Eds). Three-dimensional analysis of

. .. . . human movement. Champaign: Human Kinetics; 1995. p. 371.
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In general, Ca. culated joint ang _es dgwate rom t _e rfea from video using kalman filters and virtual humans. Hum Mov Sci
angles for two different reasons. First, inexact specification  2003;22(3):377-404.
of the model, due to non-rigid segments or wobbly masses, Chen L, Armstrong CW, Raftopoulos DD. An investigation on the accu-
together with inaccuracies of marker detection lead to a  racy of threg-dimensjonal space reconstruction using the direct linear
manifold of different postures, all of which approximate but __transformation technique. J Biomech 1994;27(4):493-500.

- Cruse H, Bartling C. Movement of joint angles in the legs of a walkin
do not match exactly the detected marker positions. They ~ " - & Caraus?us morosus. J Ins FJ>hysio| ?995,41,761_971 g

can be_ detected by a Ia_rge remainivigw error a_fter op- DiFranco DE, Cham TJ, Rehg JM. Reconstruction of 3-d figure motion
timization. Second, multiple postures are possible without  from 2-d correspondences. In: Computer vision and pattern recognition
any difference in the value of the error functiopogture (CVPRO01), vol. 1. Los Alamitos: IEEE Computer Society Press; 2001.

error). These do not deviate stochastically, but are distinct __P- 307-15.

. . . . ;_Durr V, Matheson T. Graded limb targeting in an insect is caused by the
solutions in the search space as illustrated by the disconti shift of a single movement pattern. J Neurophys 2003:90(3):1754—

nuities inFig. 8and an example ikig. 9. This type of error 65.
is strongly dependent on the number of camera views. Thus,ian J, Poppele R. A single-camera method for three-dimensional video
it can certainly be improved by additional views, but possi-  imaging. J Neurosci Methods 2002;120(1):65-83.

bly also by using a different configuration of markers. For Faugeras O, Robert L. What can two images tell us about a third one?
example, the described ambiguity in theangle could be Int J Comput Vision 1994;18:5-19.

removed by a front view of the insect. Optimal marker posi- Gavrila DM. Vision-based 3-d tracking of humans in action. Ph.D. thesis,
y - Op P University of Maryland; 1996.

tioning will differ according to the observed movement type Gleicher M, Ferrier N. Evaluating video-based motion capture. In: Com-
and could reduce marker occlusions and improve accuracy puter animation 2002 (CA02). Los Alamitos: IEEE Computer Society
of the reconstruction. Press; 2002. p. 75-81.
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; ; Addison-Wesley; 1991. p. 503.
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frame via a graphical interface.

tracking to increase the reliability of optical motion capture. Hum
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