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Abstract

We have developed and evaluated a new optical motion capture approach that is suitable for a wide range of studies in neuroethology and
motor control. Based on the stochastic search algorithm ofSimulated Annealing (SA), it utilizes a kinematic body model that includes joint
angle constraints to reconstruct posture from an arbitrary number of views. Rather than tracking marker trajectories in time, the algorithm
minimizes an error function that compares predicted model projections to the recorded views. Thus, each video-frame is analyzed independently
from other frames, enabling the system to recover from incorrectly analyzed postures. The system works with standard computer and video
equipment. Its accuracy is evaluated using videos of animated locust leg movements, recorded by two orthogonal views. The resulting joint
angle RMS errors range between 0.7◦ and 4.9◦, limited by the pixel resolution of the digital video. 3D-movement reconstruction is possible
even from a single view. In a real experimental application, stick insect walking sequences are analyzed with leg joint angle deviations between
0.5◦ and 3.0◦. This robust and accurate performance is reached in spite of marker fusions and occlusions, simply by exploiting the natural
contraints imposed by a kinematic chain and a known experimental setup.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Automated 3D analysis of movements (motion capture)
has become an important method for studies in biomechan-
ics, motor control and neuroethology. The study of limb
movements in particular requires automated and reliable
aquisition of large datasets to cope with variability of move-
ments within a broad natural action range and to study their
context-dependent control. Insects such as locusts and stick
insects are prominent model systems for the study of motor
physiology(Burrows, 1996; Bässler, 1983), and recent ex-
periments have emphasized the need to analyze the variabil-
ity of insect limb movements in a range of situations(Dürr
and Matheson, 2003).

Commercial video-based optical motion capture systems
(e.g. Vicon Motion Systems, Peak Performance Technolo-
gies Inc.) use retroreflective markers placed on the analyzed
body. Typically, marker positions are recorded from mul-
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tiple views, which enables the system to reconstruct their
3D-trajectories. Beginning with an initial marker assign-
ment, joint positions and angles can subsequently be calcu-
lated for each time frame from a set of identified markers.
However, optical motion capture systems have to deal with
a number of problems:

• Markers can disappear in a view, for example when they
are occluded by the segment on which they are placed,
by other body parts, or when they are rotated parallel to
the light source. They can also occlude each other, which
appears as a marker fusion in the video.

• Ghost markers appear at positions where the experimental
setup or the body surface reflects the light, e.g. the shiny
cuticle of some insects.

• Simple marker tracking algorithms depend on the time
resolution of the trajectories, because they use tracking
techniques to reconstruct the initial marker assignment in
subsequent frames. This approach is inapplicable for fast
movements when relying on common video equipment
with a time resolution of 50 Hz.
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Incorrect marker identifications require time-consuming
manual reassignments in individual video frames, so the
robustness of the system against the afore-mentioned prob-
lems is of great importance for usability. Motion capture
systems can improve their robustness by using high speed
cameras and several views of the scene, but this increases
cost and complexity. Here, we present an approach that
achieves very good performance while using only standard
laboratory equipment.

In the simplest case of optical motion capture, marker po-
sitions are tracked in 2D image space and their 3D positions
are reconstructed by triangulation algorithms(Blackman
and Popoli, 1999; Faugeras and Robert, 1994; Chen et al.,
1994). To improve robustness, some human motion analysis
systems use kinematic body models as well as tempo-
ral movement models(Aggarwal and Cai, 1999; Gavrila,
1996). Kinematic models impose position constraints on
markers, because of constant segment lengths and joint
angle limits (DiFranco et al., 2001). A human kinematic
model is used byHerda et al. (2001)to verify reconstructed
marker trajectories (performed by stereo triangulation) and
to predict marker occlusions. Marker trajectory identifica-
tion is also checked by a skeleton model in(Lopatenok
and Kudrjashov, 2002)by application of rules for plausible
joint positions. The latter two use the skeleton only as a
validation technique for reconstructed marker trajectories.
Eian and Poppele (2002)use a kinematic model and camera
dilation formulas to infer joint angles. This is done even
from a single view, but marker occlusions are not dealt with
and it was tested on very constrained postures.

To further constrain plausible marker movements, the
kinematic model can also be used as part of a more gen-
eral state space model includingtime dynamics of the
movement.O’Rourke and Badler (1980)describe a cyclic
scheme consisting of four steps: prediction of state, synthe-
sis, image analysis and state estimation. State space filters
like the Extended Kalman Filter compare reprojections of
the predicted model state to detected image features like
marker positions. State variables usually include joint an-
gles and velocities(Cerveri et al., 2003; Liu et al., 1999;
Nickels and Hutchinson, 2001; Ringer and Lasenby, 2000).
Hidden Markov Models model the dynamics of move-
ment (Karaulova et al., 2000). A posteriori constraints for
smoothing of angular time courses are applied byDiFranco
et al. (2001). However, the prediction step of these systems

Fig. 1. Image processing steps to detect 2D marker positions with a sample marker image at each step. Video frames are de-interlaced into even and
odd half-frames (feven, fodd). Every de-interlaced video frame is filtered (e.g. thresholded) into a binary image. From this, marker pixels are clustered
and separated from the background into marker regions. Centroids of the regions determine a set of marker positionsd.

is only feasable, if the movement is sampled at a sufficient
frame rate. In many experimental situations, it would be
preferable to use standard video and therefore a sampling
rate of only 50 Hz, or even concatenated videos of inde-
pendent movement sequences. Particularly, concatenation
can be useful in behavioral experiments with many trial
repetitions, because the video sequence does not need to
be cut and no manual marker assignment is necessary for
individual trials.

We present a new algorithm, which utilizes a constrained
kinematic body model to allow 3D motion capture of
PAL/NTSC avi-videos with only two views and single frame
analysis. This is a stochastic algorithm that manipulates
the posture of the model to minimize a distance measure
between projections of the model and the recorded markers
in every single frame. Less accurate 3D reconstruction is
possible from a single 2D view, albeit with less accuracy.

In (Ohya and Kishino, 1994), a stochastic method is used
to determine human posture utilizing genetic algorithms.
This silhouette matching algorithm produces rather large
errors in posture reconstruction. A stochastic error func-
tion minimization approach is also used byRockwood and
Winget (1997)to reconstruct 3D-models of objects from 2D
photos in an engineering application, but without analysis
of natural movements.

In contrast, our approach optimizes body posture by
means of an error function, using markers on a kinematic
chain. Thus, we use joint constraint information to limit
the search space. The Simulated Annealing (SA) algorithm
exploits these constraints to find efficiently the best match
between the model and the camera views. The algorithm is
implemented in a software package calledVideoTrack and
is shown to accurately reconstruct natural movements.

2. Motion capture as an optimization task

In a typical application in neuroethology or physiology
of animal locomotion, retroreflective markers are used to
label locations on an articulated body. Movement of the
body is then video-recorded, and films are digitized and de-
interlaced. To detect 2D marker coordinatesd in each cam-
era view, a number of image processing steps are applied to
the resulting AVI-file (Fig. 1): first, the image can be filtered
with standard image processing filters for threshold, erosion
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Fig. 2. A kinematic chain with jointsJ with their rotational axes, segments
S and markersM. Each joint J contains a local coordinate system
(indicated in the circles). Subsequent joints are connected by segments.
Joint Jn+1 defines the end-effector of the chain. The location of markers
on the chain is defined by cartesian coordinates within the corresponding
coordinate system. Note that markers are typically located on the surface
of a limb, whereas segments denote the main axis connecting two joints
in the model.

and color as described byGonzalez and Wintz (1991). Then
the filtered image is segmented, so marker positions are de-
termined by the centers of the resulting regions.

2.1. Kinematic model

The articulated body is described as a set of kinematic
chains (Fig. 2). Every chain consists of rigid segmentsS,
joints J and markersM. Segments are defined by a con-
stant length (translationT ) and a default rotationRs with
respect to the originating joint to which they are connected.
An arbitrary number of markers can be positioned on each
segment with a 3D translational vector.

Every joint coordinate system is defined by three rota-
tional degrees of freedom (DOF) expressed in a rotational
matrixR, a constant default orientationRd of the joint on the
originating segment and a translationT . Rd simplifies the
definition of joint constraints, because the resting orientation
of a joint can be reproduced in the model. Direct kinemat-
ics for a given kinematic chain are obtained through multi-
plication of homogenous transformation matrices (Eq. (1)),
starting from a root jointJ0, followed by segmentsSn and
joints Jn and finally terminated by an end-effectorJn+1.

J0 = R0 · Rd
0; Jn+1 = Jn · Sn · Rn+1 · Rd

n+1 · Tn+1 (1)

Sn = T sn · Rsn
whereR = Ry · Rx · Rz is the homogenous rotation matrix
defining the rotation of the joint coordinate system by ro-
tation according to Euler angles; andT is the homogenous
translation matrix.

In the simplest case, the origin of the root (J0) is con-
stant, which means that its position is not changed by ma-
nipulation of the posture. Alternatively, it is marked by a
root marker, which is tracked by a next-neighbor algorithm
in all viewplanes and determines an offset-position for each
frame.

For direct kinematics of each one ofd marker positions,
the matrixMd , which describes the transformation of thenth
markerMs

n on segments into the root coordinate system, is
calculated according toEq. (2).

Md = Js · Ss ·Ms
n (2)

Projection onto the camera viewplane is determined by mul-
tiplication with a projection matrix of the appropriate view.

For example, an orthogonal top projection of a 3D homoge-
nous marker translationm onto a 2D homogenous vector
p = (xp, yp,1)T is given inEq. (3)with scale factors.

xp

yp

1


 =



s 0 0 0

0 s 0 0

0 0 0 1


 ·m (3)

The exact projection matrix values depend on the camera
parameters and are derived from camera calibration methods
as proposed byZhang (1999)and implemented in the Matlab
camera calibration toolbox.

2.2. Joint angle constraints

Although all joints of the kinematic model have three
DOF and can rotate arbitrarily, additional constraints need
to be specified in most cases. They can be categorized into
two constraint types.Physiological constraints determine
the range of angles that can be actively controlled by a spe-
cific body. For example, many insect leg joints are typically
modelled as hinge joints(Cruse and Bartling, 1995), which
means that two rotational axes are locked.Movement con-
straints describe the range of angles that the articulated body
actually uses for a particular type of movement. For exam-
ple, walking behavior of an insect typically consists of a se-
quence of swing and stance movements with limited angular
ranges. In general, neither type of constraint can be deter-
mined exactly. The constraint mechanism should either be
able to update the angle constraints based on the analyzed
movements or allow manual control by an expert.

In our implementation, joints are characterized by discrete
angle probability distributionsH for each rotation axisi in
360 bins. They are initialized with an uniform distribution
across the physiologically plausible angular range, and zero
values in the remaining bins. For each measured joint angle
ξ, the value of a distribution binx can be updated and nor-
malized as inEq. (4), whereN is the number of trials for
the updated distribution.

Hi,N(x) = (N − 1)Hi,N−1(x)+∆
N

; ∆ =
{

1, ξ ∈ x
0, else

(4)

2.3. Optimization by means of an error function

For each model posture, an errorE is calculated as a
similarity measure between model and recorded markers.
ThereforeE is the sum of all Euclidean distances between
projected model markersp and their nearest detected points
d in vmax views (Eq. (5), seeFig. 3 for scheme).

E =
vmax∑
k=1

mmax∑
i=1

min
c
(‖pki − dkc‖) (5)

where 0≤ c ≤ C andC is the number of detected points.
C does not necessarily equalmmax (i.e. in the case of ghost
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Fig. 3. Schematic view of error calculation. A 3D kinematic chain is projected onto a side and a top view (pointsm) and compared to the recorded
marker positionsd in the video. In the experiments, a mirror was used instead of a second camera.

markers). Wrong matching of model markers and detected
points is discussed inSection 4.

Note that E is non-linear, because marker projec-
tions pi are determined by forward kinematics. Therefore
gradient-descent algorithms would often converge into lo-
cal minima. Also in general the global minimum ofE is
non-zero due to inaccuracies in the camera setup, image
processing and segment length measurements.

A suitable optimization algorithm is theSimulated An-
nealing approach, developed byKirkpatrick et al. (1983). It
is a Monte Carlo method that iteratively traverses the pa-
rameter space in a stochastic way. In every iterationn, a ran-
domized vectorv is added to the parameter vectorj, which
contains the angles for all rotational axes for all joints. Vec-
tor v is calculated from equally distributed random numbers
ri ∈ [−1; 1] and the standard deviation of the appropriate
joint axis distributions(Hi). Additionally, v is scaled with a
value l, representing the search step length, which is equal
for all joints (seeEq. (6)).

jn+1 = jn + l · v with vi = s(Hi) · ri (6)

The standard deviations(H) is larger for more variable joint
axes and therefore generates larger search steps. It can also
change over time, because the probability distributions are
adapted during the analysis.

Additionally to Eq. (6), vi is computed again, if
Hi(jn+1) < Th, whereTh is a threshold describing plausi-
ble joint angles. The decision whetherjn+1 is accepted as
the new parameter vector is determined by the Metropolis
criterion (Kirkpatrick et al., 1983). It is based on the dif-
ference between errorsEn+1, En and a parameterτ called
temperature. Ifjn+1 is rejected, it is reset tojn. The algo-
rithm terminates afterNend iterations or ifE < ε, whereε
is an error residual set by the experimenter. For a review
about the SA-algorithm and its properties, see(Aarts and
Korst, 1989).

The temperatureτi at iterationi is multiplied by cτ ∈
[0; 1] eachNτ iterations and therefore decreases exponen-
tially. The temperature annealing valuecτ must be chosen
carefully, because it controls the probability of escaping lo-
cal minima. Similarly, the search step lengthli is multiplied
by cl ∈ [0; 1] eachNl iterations. It determines, how quickly
the search space is reduced.

3. Evaluation results

The presented algorithm was implemented as a software
application on a standard PC (Section 3.1). Its accuracy
and robustness were evaluated both on artificially generated
videos with known parameters (Section 3.2) and in an ex-
perimental situation with real insects (Section 3.3).

3.1. Implementation

The presented algorithm has been implemented inVisual
C++ for MS Windows and was tested on a PC equipped
with an Intel Pentium 4, 1.8 GHz processor. The program
VideoTrack features a graphic interface and loads AVI-files
in DV-video format (720× 576 pixels), with one or two
views of the scene in one video. These can be obtained by
using a video splitter or a mirror. A rectangular region of
interest can be set, as well as the combination of filter mod-
ules for image processing. Filter parameters can be adjusted
to allow extraction of as many markers as possible while
suppressing ghost marker regions.Fig. 4shows a screenshot
of the program.

An appropriate kinematic chain and corresponding
joint constraints are loaded from XML-files and visu-
alized in an OpenGL-view using a scenegraph library
(http://www.openscenegraph.org). The kinematic chain can
be manipulated in a dialog with immediate display of its

http://www.openscenegraph.org
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Fig. 4. Screenshot of the softwareVideoTrack. The main window is divided into three parts: The left part (1) contains a control panel and a table with
error function values for each frame. In the middle (2) is a video view, which shows the current video file and marker projections. The top portion
illustrates the side view of a stick insect marked with reflective discs. The lower portion shows the corresponding top view. The analyzed posture for
the selected frame is shown in an OpenGL-visualization on the right side (3).

projection on the video-image. The starting posture in the
first frame is calculated from mean values of joint angle
distributions.

Parameters for the SA were set manually according to
Table 1. As the maximum number of iterations determines
the speed of the algorithm, this parameter was limited to a
value that permitted sufficient convergence and reasonable
rate of progress. The cooling schedule, which determines
how temperature values are decreased, was set according to
general rules given bySait and Youssef (1999, pp. 66–73).

3.2. Accuracy: analysis of virtual locust leg movement

An estimation of the posture reconstruction accuracy in
real experiments has two requirements: First, all experimen-

Table 1
SA parameters for evaluation experiments

Parameter Value

Nend 35000
Nl 3500
Nτ 1500
τ0 200
l 1
cl 0.75
cτ 0.75
ε 1

If the error for a frame was larger than an arbitrary value (here: 10 pixels),
the frame was analyzed again, at most five times.

tal parameters (such as joint angles, segment lengths and
camera projection) must be known. Second, the analyzed
movement should originate from empirical data, so that the
algorithm can utilize natural joint characteristics during anal-
ysis. To determine the accuracy with which an experimental
situation in insect motor physiology could be analyzed ide-
ally, we implemented a 3D-model of a locust leg and ren-
dered an artificial video. To satisfy the second requirement,
10 manually analyzed grooming movement sequences were
concatenated to one video (668 frames, 13.4 s total) using
kinematic data fromDürr and Matheson (2003).

The kinematic model that was used to generate the video
also served for the analysis (Fig. 5): The body–coxa jointJ0
was described with three DOF, while the trochanter–femur

Fig. 5. Kinematic chain of a locust hind leg used for the accuracy
evaluation. Body–coxa jointJ0 is the root-joint with three rotational
axes and angular limits in brackets:ϕ[120◦; 220◦], Ψ [−40◦; 40◦] and
α[−10◦; 10◦]. It is connected to the trochanter–femur jointJ1 by the
coxa, and the femur–tibia-jointJ2 by the femur.J1 and J2 are hinge
joints with axesβ[−30◦; 60◦] and γ[20◦; 160◦] respectively. Anglesα, β
andγ rotate the hind leg within a plane, i.e. the leg plane. Anglesϕ and
ψ determine the orientation of this leg plane.
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joint J1 and the femur–tibia jointJ2 were considered as
hinge joints. Hinge joints were locked in two of the three
DOFs by setting a single angle bin of the joint histogram
to 1. Markers were positioned at the joint centers in this
experiment with a diameter of 4 pixels (1.4 mm).

Two orthographic views (side and top) were generated in
one video, resulting in a leg length of 181 pixels (coxa: 13,
femur: 91, tibia: 77) for each view. The analyzed leg uses
a quarter of the PAL resolution and therefore resembles the
resolution in the real experiment. The algorithm was evalu-
ated in fully automatic mode with no manual corrections of
the detected posture.

The accuracy of the image processing was determined
by comparison of the calculated marker projections and ob-
served marker centroids in every video image. Image pro-
cessing was performed at a speed of 8.4 frames per second
(fps). Two errors were made during the image processing:
first, the mapping of continuous marker positions to discrete
coordinates led to a quantization error during the generation
of the video. Second, the clustering algorithm calculated a
center pixel for each marker, which may not be the exact
center of the marker. In a typical 5 s sequence, this caused
an image processing RMS error of 0.43 pixels. Therefore,
image processing algorithms introduce only a small carte-
sian error to the subsequent posture optimization.

The error made during optimization can be partitioned
into two classes: First, the remaining error (view error) of the
optimization function (errorE in Eq. (5)), which measures
the distance between the model’s projection and the recorded
view. Second, the angular error (posture error) between the
analyzed model posture and the real posture in all joints.
Although both errors depend on each other, optimization of
one of them does not necessarily lead to a small value of
the other one. For example, occluded markers can produce
a large view error, even when the object posture can be
estimated well. On the other hand, if only a few markers are
available, they can be approximated well in all views with
multiple possible postures, increasing the posture error.

Having applied SA parameters ofTable 1, the speed of
fitting the body to the detected points was 0.4 fps. The av-
erage view error of 2.9 pixels (S.D.: 1.1 pixels) total was
added up for eight detected markers (four markers in each
of two views).

A sensitivity analysis was performed to ensure that cho-
sen SA parameters were sufficient for the task.Nend could
be reduced to 20,000 (with linear scaling ofNl andNτ), in-
creasing the average view error by 5% of the previous value.
The average result did not improve by further increase of
the iteration number. Variation ofcl andcτ in the range of
[0.41; 0.79] kept the view error within 5% of the old value.

Resulting angular RMS errors were low and ranged from
0.7◦ to 4.9◦, depending on the joint. Original and analyzed
angle time courses for a typical sequence are plotted in
Fig. 6. α-angles andβ-angles systematically deviated from
the real angles (RMSE: 4.7◦, 4.9◦). This effect was due to
the short coxa segment between the parallelα- andβ-axes.

Numerical inaccuracies in the image processing, causing a
deviation of a single pixel in detection of the marker on
the coxa-femur jointJ1, changed the measured angle by
atan(1/13) = 4.4◦. Nevertheless the small overall error in
α+β implied that the error in theα-joint was cancelled out
by the error in theβ-joint. Thus, calculation of the angles of
the next distal joint remained accurate (γ-angle inFig. 6).

In a few frames, the algorithm converged to a posture
with a large view error, indicating that it converged to a
local minimum. Because SA is not a deterministic algorithm,
this problem was overcome by repeated analysis of affected
frames with the same SA parameters, until an error threshold
of 10 pixels was reached. This threshold was chosen, because
it was clearly larger than the expected analysis result.

An example of a large posture error due to ambiguous
postures despite small view error is shown inFig. 6 for
two frames (see arrows). Anglesϕ andψ differ from the
real angles, even though the view error is not increased.
Therefore, there exist two postures, each of which minimize
the error function with differentϕ- andψ-angles. If these
frames are analyzed repeatedly, the algorithm also converges
to the correct posture. Possible improvements to eliminate
ambiguous postures are discussed inSection 4.

For comparison, the algorithm was also tested using only
a single view, same model and SA parameter set. Gener-
ally, accuracy is lower for rotations orthogonal to the view
plane, e.g.ϕ andψ in side view andα, β, γ in top view.
That is because angles are implicitly inferred from single
segment length projections (seeTable 2for detailed angle
errors), which is less accurate than if several projections are
measured. In case ofα andβ, however, the RMSEs are even
lower in the single side view, because the less accurate top
view (for these angles) does not have any influence on their
reconstruction.

3.3. Robustness: leg movement analysis of freely walking
stick insects

Having determined the accuracy of the algorithm in an
ideal video, we were interested in its robustness and appli-
cability to real experimental situations. We therefore tested
the system on walking behavior of another model animal in
motor physiology, the stick insect (Carausius morosus). A
typical experimental situation causes many difficulties that a
motion capture algorithm must deal with. For example, the

Table 2
RMSE for all analyzed joints for two views and single views for an
artificial video (668 frames)

Rotation axis ϕ (◦) ψ (◦) α (◦) β (◦) α + β (◦) γ (◦)

Both views 1.7 1.5 4.7 4.9 0.7 0.7
Side view 20.8 17.4 3.9 3.6 3.1 3.5
Top view 14.7 10.4 23.7 29.6 23.4 52.4

Analysis accuracy is highest for two views or, if the rotational axes are
orthogonal to the viewplane, sometimes for a single view.
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Fig. 6. Analyzed joint angles for a representative locust leg movement lasting 1.4 s (71 frames). The video was generated artificially to allow exact
measurement of the algorithm’s accuracy. Note the different scale forγ-angle. RMSE of the rotational axes are:ϕ-axis: 2.6◦, ψ-axis: 2.3◦, α-axis: 4.0◦,
β-axis: 4.5◦, γ-axis: 0.7◦. The analyzedα- andβ-angles systematically differ from the original values due to a small segment length and the effect of
image processing inaccuracies. Accordingly, their sumα + β has a RMSE value of 0.7◦. Ambiguous postures (see arrows) are found for theϕ- and
ψ-angles in frames 56 and 58, where two possible postures minimize the error function.

segments of each leg are nearly orthogonal to one another
during walking, resulting in marker occlusions and marker
fusions in one or both views. In addition, inaccuracies such
as inexact segment length measurements and kinematic sim-
plifications limit the optimization of the posture. Finally,
technical inaccuracies such as camera parameters influence
the optimization process. Real videos of a complex move-

ment therefore provide the best test for the robustness against
inaccuracies of real experiments.

3.3.1. Setup
Animals were marked with reflective tape markers (3 M

ScotchLite, diameter: 1.2 mm). To analyze the movement
of the body axis and the right front leg, two markers were



50 J. Zakotnik et al. / Journal of Neuroscience Methods 135 (2004) 43–54

Fig. 7. Kinematic model of the right front leg of a stick insect, as used
for the robustness measurements. Four markersM0–M3 were used and
recorded by two camera views. The root of the kinematic chain is joint
J0 which determines the body axis orientation in space. Its rotation axes
are π[−35◦; 35◦] and ρ[0◦; 20◦]. It is connected to a thorax–coxa joint
J1 with three DOFα[150◦; 240◦], ψ[−30◦; 50◦] and β[−45◦; 75◦]. The
femur–tibia jointJ2 is modelled as a hinge joint with a single rotational
axis γ[10◦; 140◦]. The segment between the thorax and the femur (the
coxa) is short, allowing us to model the combined thorax–coxa and
coxa–trochanter joints. The trochanter–femur joint is fused in stick insects,
so it can be ignored.

placed on the body, one on the femur and one on the tibia.
Marker positions and segment lengths were measured using
a caliper gauge to obtain a body model for each animal.Fig. 7
shows the kinematic chain that models the stick insect front
leg and body. It consists of rotational axes and joint angle
constraints that were estimated manually and initialized with
an equal distribution.

Fig. 8. Analyzedα andγ-angles for 50 analysis iterations of a single video (159 frames). Block bars indicate stance movements, open bars indicate swing
phase. Results deviate because of multiple equally good local minima of the error function (mean error value of each analysis: 8.2 pixels). Although the
α-angle can be reconstructed unambiguously (low deviation of 1.48◦ between runs), theγ-angle is more difficult to determine. The time inset shows that
the analyzed angles for a particular frame do not deviate stochastically but rather contain few distinct values. These correspond to ambiguous postures
as explained inFig. 9.

Walking animals were recorded on PAL videotape using
a CCD-camera (COHU 4910) located above the setup. A
side view was obtained from a coated mirror set at 45◦
and 150 mm from the animal. The setup was illuminated
by an LED flash light consisting of a circle of 36 IR-LEDs
(880 nm), mounted on a ring around the camera lens to
achieve maximum brightness of the retro-reflective markers.
The video synchronization signal was extracted electroni-
cally to trigger one flash per half-frame. The LEDs were
flashed to maximize their power consumption capacity and
therefore their brightness.

The camera was positioned 1300 mm above the animal,
with a focal length of 3900 mm. No significant lens distor-
tions were measured, so orthographic projection matrices
were used (seeEq. (3), top: s = 3.0, side:s = 2.86).

Videos were digitized (miroVideo DC30,Pinnacle Sys-
tems), de-interlaced and processed by a threshold filter.

The starting offset of the root marker was determined
manually for the top and side view in the first frame of
each walking sequence. Parameters of the SA algorithm
were set as shown inTable 1. We analyzed four videoclips
(526 frames, 10.5 s total length) in 100 runs of the software.
Repetitive analysis produced slightly different results in each
trial, due to the stochastic nature of the algortihm. The mean
deviation gives a measure for the precision of the algorithm.
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Table 3
Median standard deviations for all joints after 100 analyses of four videos
(526 frames total)

Rotation
axis

Median of
S.D. (◦)

Joint angle
range (◦)

S.D./angle
range (%)

π 0.50 70 0.72
ρ 0.91 20 4.54
α 1.71 90 1.90
ψ 3.04 80 3.80
β 2.54 120 2.11
γ 2.83 130 2.18

Because different joints are constrained by different angle ranges, we also
indicate the percentage of their deviation with respect to their range.

3.3.2. Results
In contrast to the ideal setup used inSection 3.2, a number

of uncertainties inevitably affected our analysis results. Of
particular importance were those that caused a mismatch of
the kinematic model with the real morphology, precluding
an error function value of zero. Because model projections
cannot match the video exactly, different postures may mini-
mize the error function equally well. Although the minimum
error did not become zero, convergence of the algorithm was
optimal in the sense that it succesfully minimized the error
function. The average view error was 8.1 pixels (S.D.: 3.4,
n = 52600), accumulated for eight markers, indicating that
the view error per marker is in the range of a single pixel.
In this experiment, image processing speed was 6.6 fps and
model fitting was performed at 0.4 fps.

Analyzed angles for all rotational axes reveal typical
walking behavior, with stance and swing movements. Time
courses for theα- andγ-angles for one video are displayed
in Fig. 8, showing four stance and swing movements of a
leg. The precision of the system is described by the median
values of the S.D. for all rotational axes (seeTable 3). Devi-
ations range from 0.50◦ to 3.04◦ (0.7% to 4.5% joint angle
range), while some sections of the movement are analyzed
more precisely and others contain ambiguous postures.
An example of a common ambiguous posture is shown in
Fig. 9. Two distinctγ-angles both minimize the error func-
tion, so the algorithm stochastically converges into either
one of them. Improvements to the algorithm to eliminate
such ambiguities are discussed inSection 4.

Fig. 9. Example of two ambiguous postures (postures A and B shown in the 3D model) from stick insect walking, in which the algorithm detects two
minima of the error function. Both possible femur–tibiaγ angles generate very similar side projections, i.e. marker distancesd1 andd2 differ by a very
small value, and therefore contribute little information to the posture reconstruction. The top projection can be interpreted in two ways: Either asthe
real posture (A) which matches all observed markers or as an erroneous posture B which fuses two markers and assumes that the remaining is a ghost
marker (white square).

4. Discussion

We demonstrate the power of a novel video-based motion
capture algorithm that minimizes an error function by means
of Simulated Annealing. The algorithm detects the current
posture of an articulated body by matching projections of a
kinematic model to a detected set of marker points. We have
designed a system that minimizes time-consuming manual
corrections of the data and provides sufficient accuracy for
posture reconstruction, as tested for two model systems in
motor physiology. It achieves high robustness even when
using only two standard CCD camera views and 50 Hz frame
rate.

Standard methods identify and track markers to deter-
mine their 3D positions and subsequently infer the body
posture by kinematics calculations exploiting known marker
identity, position and velocity (e.g.Allard et al. (1995)).
Such methods become unreliable when analzsing fast limb
movements, because the trajectories are sparsely sampled.
In addition, marker occlusions, fusions and ghost mark-
ers hinder frame-by-frame identification of individual mark-
ers. For example, a marker fusion in one single frame may
lead to incorrectly switched labels and therefore erroneous
data in all subsequent frames. Although predictive algo-
rithms like the Extended Kalman Filter adapt to the qual-
ity of their prediction, their history dependence makes them
error prone in cases where the frequency of the observed
movement is at a similar range as the sample frequency.
Then, joint angle accelerations become too erratic to be pre-
dicted. In the experimental situations tested in the present
study, 50 Hz recordings of fast locust kicks and stick in-
sect swing movements represent such difficult situations, be-
cause extension/flexion cycles can alternate during only a
few frames.

In contrast, our approach analyzes each frame indepen-
dently from previous ones. Apart from optional tracking of
a root-joint that defines the overall movement and the frame
of reference, no explicit marker-labelling or tracking is per-
formed. The camera time-resolution does not influence the
quality of analysis. One consequence is that even concate-
nated videos of non-continuous movements can be analyzed,
as is useful in cases in which several movement sequences
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were recorded on one video tape at different times. Further-
more, no initial marker assignment is necessary, because the
system optimizes the posture in the first frame. It also re-
covers automatically from badly or inaccurately analyzed
postures.

On the other hand, the posture has to be determined unam-
biguously for each frame. For example, videos of stick insect
movements often contained marker fusions, which result in
several possible postures as shown inFig. 9. To minimize the
number of possible postures in each frame, the search space
is constrained to valid postures by the use of joint angle his-
tograms. In the terminology ofGleicher and Ferrier (2002),
joint angle histograms are typicalcharacter constraints, be-
cause they describe limits for joint angles and, in addition,
the probability of a specific movement type. In our approach,
histograms are adapted during the analysis and saved in an
XML data format, allowing standardized exchange of con-
straint archives and continuous improvement of subsequent
experiments. The SA algorithm uses the histograms to limit
the search space to likely values. Other data-mining methods
such as principal components analysis could also be utilized
to simplify the searched posture space.

Disambiguation of detected postures can be achieved by
further constraining the model predictions to a maximum
velocity or acceleration. For example, violation of such con-
straints can force large increments on the error function or
trigger an automatic re-analysis of the frame. In this solu-
tion, the algorithm would not rely on particular joint an-
gles from previous frames, nevertheless exploit a plausible
motion continuity property. Another disambiguation heuris-
tic would increase the error function, if not all markers in
a videoframe are next-neighbors to a model projection. In
both cases, SA avoids these situations automatically.

Designing the motion capture process as an optimization
task reveals three interesting properties. First, analyses of
artificial videos showed that SA is capable of solving the
minimization problem, because the remaining error averages
out to only a few pixels equalling the range of image pro-
cessing errors. Second, using modern PCs, it is possible to
analyze experimental data over a timescale where the ex-
perimenter can watch the progress. Moreover, the speed is
easily adjustable by manipulations of the maximum num-
ber of iterations and/or the terminating error threshold. Al-
though the system has not been designed for real-time usage,
a real-time application seems possible by reduction of the
maximum number of iterations with more inaccurate results.
Using a kinematic model with a larger number of joints (e.g.
all six legs of an insect, or a human body) and more markers
is possible, but more complex calculations of forward kine-
matics would slow the algorithm. Third, the remaining er-
ror after optimization provides an explicit confidence rating
for posture reconstruction, i.e. it allows the experimenter to
immediately detect frames that need manual corrections or
re-analysis. This is especially important, when the user uses
the software in semi-automatic mode, in which he verifies
the results of the analysis for each experiment.

Ghost markers generally do not affect the performance
of the algorithm, because they do not change the minimum
of the error function. They do not match constant segment
lengths or angle constraints and therefore are not closest
points to model marker positions. The latter property is par-
ticularly valuable in situations where the experimental setup
does not permit control of the contrast between markers and
background. This has been a significant problem in analyz-
ing the movements of insects, which often have highly re-
flective surfaces (e.g. wings).

As an option for more accurate reconstruction, our algo-
rithm easily scales to a variable number of camera views. Ad-
dition of additional cameras is simple as it requires only the
measurement of their projection matrices and the incremen-
tation of the parametervmax in the error function(Eq. (5)).
The method does not perform geometric reconstruction of
3D-positions of identified markers, like the widely used
DLT-algorithm described byChen et al. (1994). Rather, our
approach yields posture data from manipulation of a forward
model and does not require solution of the inverse kinemat-
ics problem. As a result, singularities are avoided, irrespec-
tive of the number of DOF and markers.

To generalize the algorithm to markerless motion esti-
mation, the error function could compare the model to the
video image on pixel-level. However, this would require a
more accurate model of the analyzed body and good knowl-
edge of the illumination of the experimental setup. Another
possibility would be the extraction of suitable features in
the video, which would require a higher level image pro-
cessing step. For example, inMacIver and Nelson (2000), a
3D-mesh model of a knifefish without markers was fitted to
match the video image of the animal.

Here, we evaluated the accuracy of the system with artifi-
cial videos in both single and double views. Overall angular
RMSE was smallest, if both views were used, but postures
could also be determined even from a single view. As publi-
cations on the accuracy of commercial systems use different
setups and evaluation criteria, the quantitative comparison
of achieved angular accuracy is limited. InRichards (1999),
a typical angle RMS error of 3◦ was reported for the angle
between three markers that were mounted on a rotating disc
and filmed by six cameras.McQuade et al. (2000)evaluated
the Peak Performance System, reporting an angular mean
S.D. of 1.47◦ using three cameras. As listed inTable 2, joint
angle RMS errors of the presented approach range from
0.7◦ to 4.9◦ using only two views. Therefore our algorithm
performs extremely well while using a simpler and cheaper
setup than other state of the art motion capture systems used
in neuroethology.

Having measured the precision of the system by repeated
analyses of natural stick insect movements, median stan-
dard deviation was well in the range of commercial systems
(1.72◦ on average, seeTable 3). For example,Selfe (1998)
reported a mean S.D. of 5.72◦ for the Peak 5 system in real
knee joint angle measurements, considering position uncer-
tainties for the marker placement.
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For comparison with manual analysis,Dürr and Matheson
(2003)report manual digitizing accuracy of five pixels, using
an experimental situation equivalent to the setup used in
Section 3.2. This is more than ten times the view error of
our accuracy analysis (Section 3.2) and approximately five
times the view error of our robustness analysis (Section 3.3).
Accordingly, the presented system produces considerably
smaller errors than expected from a manual analysis, while
the time effort is greatly reduced.

In general, calculated joint angles deviate from the real
angles for two different reasons. First, inexact specification
of the model, due to non-rigid segments or wobbly masses,
together with inaccuracies of marker detection lead to a
manifold of different postures, all of which approximate but
do not match exactly the detected marker positions. They
can be detected by a large remainingview error after op-
timization. Second, multiple postures are possible without
any difference in the value of the error function (posture
error). These do not deviate stochastically, but are distinct
solutions in the search space as illustrated by the disconti-
nuities inFig. 8and an example inFig. 9. This type of error
is strongly dependent on the number of camera views. Thus,
it can certainly be improved by additional views, but possi-
bly also by using a different configuration of markers. For
example, the described ambiguity in theγ-angle could be
removed by a front view of the insect. Optimal marker posi-
tioning will differ according to the observed movement type
and could reduce marker occlusions and improve accuracy
of the reconstruction.

As a last resort, the presentedVideoTrack software also
supports manual corrections of the analyzed postures in each
frame via a graphical interface.

In conclusion, the presented motion capture system works
with a low-cost and simple setup using standard equipment
like a PC and CCD camera. It was succesfully applied for
motion analysis of two model systems in motor physiology
and neuroethology. The versatility of the method makes it
suitable for analysis of a wide range of animal movements,
including those of humans. Its accuracy rivals that of com-
mercial systems that require considerably more experimen-
tal and financial effort.
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